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Allllnct-A riaht cylinder with plane ends perpendicular to the generators is considered within the context
of linear elasticity theory; "aid plates are bonded to the plane ends and one is given a general displacement
in its own pIaDe wbiJc the other is fixed. AssumiDa that the material is transversely isotropic with respect to
the direction of the generators, it is proved that the strain field converges in energy DOI1II to that of a simple
elastic stat~ shear state--as I certain parameter, dependent on elastic properties of the cylinder and its
thickDess-diameter ratio, tends to zero. Various applications are discussed includina the case of a thin
isotropic cyliDder and the case of I cylinder reinforced by fibres aligned parallel to the generators.

INTRODUCTION
Saint-Venant's torsion problem for a right elastic cylinder bounded by plane ends Xl =0, Xl = I,
perpendicular to the generators, may be specified by the boundary conditions

UI =- alx2, U2 =alx" T33 = 0 on X3 = I,

UI=U2=0,T33=0 on X3=0,

the curved surface being free, and the usual notation being used. The "no end-warping" torsion
problem is obtained by replacing the conditions T33 = 0 on X3 = 0, I by U3 = 0 thereon. The
torsional rigidity is defined to be the moment of the end tractions about the X3 axis per unit
specific angle of twist a; it is denoted by D in the former case and D in the latter. It is
known[l, 2], that

in the case of an isotropic cylinder, where I is the polar moment of inertia about the X3 axis and
,.,. is the rigidity modulus. It is known[l-3], that

D/D-+ 1

as the ratio of the height to cross-sectional length tends to infinity. It was conjectured [2, 3] that

D/(pJ)-+ I

as the aforementioned ratio tends to zero. It was this conjecture which motivated the present
paper. However, a more general proposition is proved and discussed.

A right cylinder, with plane ends perpendicular to the generators, consisting of homo­
geneous elastic material transversely isotropic with respect to the direction of the generators is
considered. Rigid plates are bonded to the plane ends, one of which is given a general
displacement in its own plane while the other is kept fixed, and the curved surface is free. The
actual elastic state is represented, to begin with, as a linear superposition of two elastic states:
the shear state and the diffemace state. The shear state corresponds to the displacement field
which varies linearly with the height and coincides with the prescribed displacements; in order
to maintain it, tractions have to be applied to the curved surface in general. Suppose that E
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denotes Young's modulus for simple tension in the axial direction, p. denotes the shear modulus
for shear in planes perpendicular to the generators, while I denotes the height and It a typical
cross-sectional length. The principal result proved is as follows: the actual strain field con­
verges, in energy nann, to that of the shear state as the dimensionless parameter

Among the consequences of this we have

as the aforementioned dimensionless parameter tends to zero.
Clearly there are two important special cases corresponding to the aforementioned dimen­

sionless parameter tending to zero: (l) the isotropic cylinder whose IIIt ratio tends to zero, (2)
the transversely isotropic cylinder where p.IE ...O-corresponding to an idealized cylinder
reinforced by continuously (i.e. densely) distnbuted (almost) inextensible fibres aligned parallel
to the generators. These two cases are discussed separately.

The principal references to (1) supra in the literature appear to be Synge[4J and Goodier[5J.
Synge used a boundary layer type approach to obtain, inter alia, an "interior solution"
corresponding to the shear state in the present instance; Goodier argued the existence of an
extended Saint Venant Principle and, by way of illustration, argued that the deviation from the
shear state is confined to a thin layer in the neighbourhood of the curved boundary. In Section 2
we deduce-from the principal result outlined in the second paragraph-that the strain field of
the difference state converges to zero in mean square as IIIt ...0: this is equivalent to saying
that the actual strain field converges in mean square to that of the shear state as IIIt ...0. This is
reminiscent of the work of Morgenstern [6J who proved inter alia that the strain field
associated with the bending of a classical elastic plate is the limit in mean ,square of the strain
field associated with a problem in three-dimensional elasticity as the thickness to cross-sectional
lenath ratio tends to zero. Finally, previous work[3l is used to derive an estimate similar to, yet
contrasting with, that described in the last sentence but one as the ratio IIIt ...0.

We now turn to case' (2) supra. A faiIry extensive literature concem.ing idealized fibre­
reinforced composites has come into existence over the past decade or so; we mention, in
particular, reviews by Spencer[7] and Pipkin[8J. Linear elastic problems involving inextensible
fibres, but without incompressibility, have been studied by England, Ferrier and Thomas [9]
and Morland[lO] in a two-dimensional context. Morland[lOJ and Everstine and Pipkin [I I, 12J
have studied certain elastic problems as the limit of inextensibility is approached; the latter
article uses a boundary layer approach to a problem which is, to some extent, a two­
dimensional analogue of that considered here. In our analysis of case 2 we deduce that the
actual strain field converges in mean square to that of the shear state as p.1E ...O. Finally, an
expression for the force sustained by the outer or boundary fibres is obtained in particularly
simple form.

I. CONVERGENCE IN ENERGY NORM
The usual indicial notation is used, Latin indices running over 1,2,3, Greek indices running

over 1, 2, and summation being implied by repeated indices; rectangular cartesian coordinates
are denoted by Xi.

Consider a riabt cylinder of homogeneous linear elastic material with plane ends Xl =0,
Xl =I, perpendicular to the generators, whose cross section is !» with boundary <t; the material
is supposed transversely isotropic with respect to the Xl direction. Its plane ends are subjected
to the displacements

UI =PI- alxz, "z =alx./o "l =0 on Xl = I,

UI ="z ="l =0 on Xl =0, (1.1)

in the usual notation, while the curved boundary is free and P, a are constants. Such boundary
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conditions may be simulated in'practice by attaching rigid plates to the plane ends Xl = I and
Xl = 0, and by giving the former a general displacement in its own plane while keeping the latter
fixed.

The solution to the aforementioned problem is represented by the linear superposition of
two elastic states: the shear state and the difference state.

(a) Shear state
Its rectangular cartesian components of displacement, strain and stress are denoted by uj,

eii' Th respectively. It is characterized by the displacement field

(1.2)

it meets the displacement boundary conditions (1.1) and the traction boundary conditions on the
curved boundary ~:

(1.3)

where (Ph P2) are the (Xl. X2) components of the unit outward normal from ~, s denotes arc
length measured along ~ from some fixed point in the positive direction, and II- denotes the
shear modulus corresponding to shear in planes perpendicular to the generators.

(b) Difference state
Its rectangular cartesian components of displacement, strain and stress are denoted by u7,

e7i' T71 respectively. It corresponds to the boundary conditions

u'j=O

and

We note that the shear state is the actual elastic state if and only if

(assuming II- -F 0), or equivalently

on ~. (1.4)

(a~O). (1.5)

That is, if and only if the boundary consists of a circle whose centre is (0, fJla), or two concentric
circles with the aforementioned point as centre: this corresponds to the well known result that
torsion without warping can only occur for cross sections which are circular, or for those bounded
by concentric circles (e.g. [13]).

It is not difficult to establish, using the Reciprocal Theorem, that

'l = 'l'- 'l" (1.6)

where 'l denotes the strain energy corresponding to the actual elastic state, 'l' that correspond­
ing to the shear state, and 'l" that corresponding to the difference state.

We now obtain an upper bound for 'lw. It proves convenient to write

(1.7)
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defined on the boundary C€. In the present context, the Principle of Minimum Complementary
Energy gives

where O'il is any statically admissible stress field: one which is symmetric, and satisfies

(a) O'ilJ = 0 in V (domain of CYlinder),]
(b) O'a~"~ =0, 0'3~"fJ =IJ-!(s) on C€,
(c) O'ljEC

I
( V),

(1.8)

(1.9)

and where W(O'I/) denotes the strain energy density corresponding to the stress field O'ij. A stress
field of the type outlined is generated by the function

wheret

and

O'a3 = ,.,,8,a, 0')) = -,.,,(X3 _1/2)'71
26,

O'ij = 0 (otherwise),

a6/a" = /(s) on C€,

(1.10)

(1.11)

the latter derivative signifying di1ferentiation along the outward normal from ~. An elementary
calculation shows that

(1.12)

where

(1.13)

!£ being a typical cross-sectional length-the perimeter length, say-and E being Young's
modulus corresponding to simple tension in the axial direction. The best bound (1.8) of the type
envisaged is furnished by that function 6 which satisfies

(1.14)

-the Euler-Lagrange di1ferential equation corresponding to (I.l2)-subject to the natural
boundary condition

(1.15)

together with (1.11). The solution of the one-dimensional analogue of this two-dimensional
system gives the clue to the choice of 6 that follows.

The coordinate system (s, n) is adopted, where s is, as usual. arc length measured along ~

from some fixed point in the positive directiOn. and n is the distance measured along an
inwardly drawn normal to ~; such a coordinate system is unique provided PI is less than a

fI'be particular IiDear depeodence of u)) on Xl is suggested by symmetry.
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certain length characteristic of the cross section (e.g. [14]). Let

e = A!e(1 +4A I-'rl/(s) eft/U!{I_ n/(A '!e)}. for n < A'!e,

e = 0 otherwise,

S81

(1.16)

where A is sufficiently small and 6 is some number such that 1> 6 > O. If we assume that the
parametric equations of the boundary ~ :Xa = xa(s) are four times continuously differentiable,
then e satisfies all the conditions stipulated in the last paragraph. Now

f {(V'.e)2 + (A!e)2(v?e)~ dA - ( {(aelan)2 + (,\!l)2(a2elan2)~ dA as A-+0 (1.17)
~ J~

where LA denotes the layer wherein 8 is non-zero. Further,

( (aelan)2dA- (/2(s)ds (AI!! e2n/IA!!)dn
JL. J,( Jo .

= (,\!l/2)L/2(s) ds (1 - eVA H)

- (A!e/2)f/2(S) ds as A-+ O.

Similarly

(1.18)

as A -+0. (1.19)

Consequently

as A-+0. (1.20)

In view of (1.8), (1.12) and (1.20) we obtain

'lW~(p.1/2)L/2(S)dS . A!e{l + g(A)} as A-+O

where g(A) is a function of A such that g(A)-+O as A-+0. It is readily verified that

(1.21)

'lWI'l' ~{(!e14)L R2(dR/ds)2 dslf~ R2dA}' A{l + g(A)} as A-+0 (1.22)

where R = {X12+ (X2 - tJla)~1/2 - the distance of a current point from the centre of rotation. We
note that the "geometrical factor" in (1.22) remains finite even when the centre of rotation.
recedes to infinity (pure translation). However, this quantity becomes very large for certain
strip-like cross sections whose breadth-length ratio is very small; such limiting cross sections are
excluded from subsequent considerations. The result (1.22) may be stated in the form

(1.23)

or, equivalently,

(1.24)
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on using (1.6). The foregoing may be expressed in substance as follows: "the actual strain field
converges in energy norm to the strain field of the shear state as the dimensionless parameter A
tends to zero".

It follows from (1.23) and (1.6) that

'il'€' --+ 1

Writing f3 = 0 in (1.1) we have

as A --+0. (1.25)

(1.26)

jj being the torsional rigidity (no end-warping) and I being the polar moment of inertia of the
cross section about the X3 axis; it foIlows from (1.25) and (1.26) that

()1(1Ll) --+ 1 as A--+0. (1.27)

This result was conjectured for an isotropic cylinder l/2--+ 0 in [2,3]. We note that (1.21)
provides a lower bound for jj when A is small, on noting (1.6) and (1.26).

2. SHORT ISOTROPIC CYLINDER; FIBRE-REINFORCED CYLINDER
To examine some further implications of (1.22HI.24) it proves convenient to examine

separately (1) the case of a thin isotropic cylinder l/2 ~ 1, (2) the case of a transversely
isotropic cylinder for which (a) ILlE ~ 1, (b) all stiffnesses other than E are comparable with IL,
and (c) I and 2 are comparable. Case 2 corresponds to a model of a cylinder reinforced by
almost inextensible fibres continuously (densely) distributed therein and aligned parallel to the
generators.

Case I.
Introducing the "reference" strain e' associated with the shear state by

(2.1)

where V denotes the volume of the cylinder, we define the "scaled" strains of the difference
state by

E'ij = e'iie'. (2.2)

Assuming that the Lame constants A, IL are both positive, the strain-energy density W(e;j)
satisfies

It follows from (1.23) and (2.1) to (2.3) that

as l/2--+ O.

(2.3)

(2.4)

The substance of this may be expressed: "the actual strain field converges in mean square to
the strain field associated with the shear state as the ratio of the height to cross-sectional length
tends to zero".

This result indicates that, for l/2 ~ I, the actual strain field differs but slightly from that of
the shear state throughout-apart from a small region/small regions where the difference may
be significant: such a region occurs in the neighbourhood of the curved surface since the shear
state is incompatible with the boundary conditions thereon in general. We note that an
extended Saint-Venant principle, analogous to that established in[15], is applicable to the
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difference state: it indicates rapid decay of the elastic field as one comes in from the boundary;
see also [5].

We use some previous work[3] to contrast the foregoing with what happens when l/Il -+00.
Write fJ =0 in connection with (1.1)1t and introduce the Saint-Venant state whose displacement
components are denoted by Uj: it is defined by the boundary conditions

on X3 = I,

on X3 = 0, (2.5)

together with zero traction on the curved boundary; c/J(XIt X2) is the Saint-Venant warping
function satisfying

(2.6)

The actual elastic state is now represented as the superposition of the Saint-Venant state and
the (second) difference state. Denoting the strain-energy associated with the Saint- Venant state
by t and that associated with the (second) difference state by 'l, the result

(2.7)

holds; using (2.7) and the results of[3] it may be established that

(2.8)

where D denotes the Saint- Venant torsional rigidity and A the lowest non-zero frequency of a
free membrane coinciding with the cross section. Denoting the strain components of the
(second) difference state by eli, and defining a "reference" strain efor the Saint-Venant state by

(2.9)

we define the "scaled" strain components

It follows from (2.8) and (2.9) that

(2.10)

'l/(lLe2V) = 2V7{<JJ,I/D) -1}/(AI). (2.11)

Confining attention to the case where the distance of the centre of rotation from the centroid of
the cross section is of the order Il at most, and excluding thin cross sections with very small
breadtMength ratio, we find, using (2.3) and (2.11) that

as l/Il-+oo (2.12)

(see (2.4». The substance of this may be expressed "the actual strain field converges in mean
square to that of the Saint-Venant state as the ratio of the height to cross-sectional length tends
to infinity". This is reminiscent of Saint-Venant's principle.

Case 2.
The result

(2.13)
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analogous to (2.4), is easily established.
If the stress-strain relations for the transversely isotropic material are given by

Til = Cllell + CI2en + C13en,
T22 = CI2ell + Cll e22 + C13en,
733 = C13(ell + e22) + Cne3l,

TI2 = (CII - Cdel2,
T23 = 2,."en,
TI3 = 2,."el3,

(2.14)

then the left-hand side of (1.23) can be expressed in the form

'i)"I'l' = ~L [¥CII- Cd(Eil - Eni+ {¥CII + C12)

- Cf3/C33}(Eil + En)2 + C33{E33 + (C 13/Cn )(E'{1 + EnW

+ 2(C11 - C'2)Ei~+4,.,,(Eii+ Ei~] dVI(,."V). (2.15)

The positive-definiteness of the strain-energy density implies the following inequalities inter alia

CII - CI2> 0, CII + C12 > 0, C3l > 0, ,." > o. (2.16)

Using (1.23), (2.15), (2.16), and remembering that all the stiffnesses (moduli) in (2.14) are
comparable with ,.,,-apart from Cn which is comparable with E-we obtain the following
mean square estimates

the notation

IIE'IJIF = O{(,.,,/E)I/2} (i '# n,
IlEiI - E~2IF = 0{(,."IE)I/2},

liE'll + E~2IF = 0{(,."IE)1/2},

11£33 + (C 13/Cn )(E'{t + En)W = 0{(,."IE)3/~ as ,."IE -+0;

Ittll = {Il2 dVI V} 1/2

(2.17)

(2.18)

is used in the foregoing and subsequently. The second and third of the estimates (2.17) together
imply

Now

IIE3311 ~ 11£33 + (CI3/C33)(EjI + En )1I + 11- (C13/C33XEi. + En~1

~ 11£33 + (C13/Cn)(E'{1 + En )1I + ICI3/C3JI(IIEilli + IIEnID·

(2.19)

(2.20)

Using (2.17)4, (2.19) and (2.20), and remembering that C13 is comparable with,.", in common with
aU other stitInesses (moduli) in (2.14) other than CJJ which is comparable with E, we obtain the
estimate

(2.21)
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the preceding work shows that, for all other values of the indices i, j, we have

S8S

as ,."IE -+0. (2.22)

The substance of the foregoing estimates may be expressed: "the actual strain field converges
in mean square to that of the shear state as the ratio of the relevant rigidity modulus to Young's
modulus tends to zero". .

The foregoing estimates indicate that the actual strain field coincides with that of the shear
state in the limit ,."IE -+0 except possibly in a set of measure zero: such a set occurs on (or
adjacent to) the curved boundary as the shear state is incompatible with the boundary
conditions thereon in general. Making the plausible assumption that the aforementioned is the
only such set, it follows the stresses of the difference state (suitably non-dimensionalized with
respect to ,.,,) T'M,." are all zero in the open cylinder except, possibly, T33/,.". The latter can be
shown to be zero throughout the open cylinder using (a) the fact that T73/,.", Tn/,." are zero in the
limit, (b) equilibrium considerations, and (c) the fact that T33 is zero on the plane X3 = 1/2 from
symmetry considerations.

We conclude by finding the force sustained by the outer or boundary fibres-the most
interesting quantity, perhaps, associated with this limiting problem.

For the moment we confine attention to the limiting case (,."IE -+0) of the difference state. In
order that a non-zero shear stress

(2.23)

on the curved boundary may coexist with zero stress field within, there must necessarily be a
singularity in T33. We can deduce an expression for this or, rather, for the force, per unit length
of boundary ~, which must be sustained by the fibres on the curved boundary; this is done by
considering the equilibrium of an infinitesimal element of the cylinder bounded by the curved
boundary ~ and by a parallel boundary a distance 6n from it, by two planes normal to the
curved boundary distant 6s from one another, and such that it lies within (X3, X3 +6X3). If 6F
denotes the force, sustained by the fibres per unit length of ~, we have

or, in the limit,

whence

dF/dx3 = -,.,,/(s),

F = - ",,(X3 -1/2)/(s),

(2.24)

(2.25)

(2.26)

on noting that F =0 at Xl = 1/2 from symmetry considerations. In the foregoing, positive values
of F correspond to tension.

Recalling that the actual elastic state is the superposition of the shear state and the
difference state, it follows that (2.26) gives the actual force, per unit length of the curved
boundary sustained by the boundary fibres. Consider now the total force F\,2 sustained by the
fibres on the portion of the boundary between the points Ph P2 as one travels from PI to P2 in

2 I

the positive sense. If rand r denote the distances of P2 and PI respectively from the X3 axis and
2 I

if X2, X2 denote the respective values of the coordinate X2, and if we integrate (2.26) and recall
(1.7), we obtain the simple expression

(2.27)

We note that the result (2.26) is obtainable by integrating the "approximate" stress 0'33

across the layer LA and letting .\ -+ O.
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